Ferrous ion transport across chloroplast inner envelope membranes.
نویسندگان
چکیده
The initial rate of Fe(2+) movement across the inner envelope membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membrane vesicles loaded with the Fe(2+)-sensitive fluorophore, Phen Green SK. The rate of Fe(2+) transport was rapid, coming to equilibrium within 3s. The maximal rate and concentration dependence of Fe(2+) transport in predominantly right-side-out vesicles were nearly equivalent to those measured in largely inside-out vesicles. Fe(2+) transport was stimulated by an inwardly directed electrochemical proton gradient across right-side-out vesicles, an effect that was diminished by the addition of valinomycin in the presence of K(+). Fe(2+) transport was inhibited by Zn(2+), in a competitive manner, as well as by Cu(2+) and Mn(2+). These results indicate that inward-directed Fe(2+) transport across the chloroplast inner envelope occurs by a potential-stimulated uniport mechanism.
منابع مشابه
K+-conducting ion channel of the chloroplast inner envelope: functional reconstitution into liposomes.
Potassium flux between the chloroplast stroma and cytoplasm is known to be indirectly linked to H+ countertransport and, hence, stromal pH and photosynthetic capacity. The specific molecular mechanism that facilitates K+ flux across the chloroplast envelope is not known and has been a source of controversy for well over a decade. The objective of this study was to elucidate the nature of this e...
متن کاملChloroplast Inner-Envelope ATPase Acts as a Primary H+ Pump.
The stromal pH of the chloroplast must be maintained higher than that of the surrounding cytosol for photosynthetic carbon assimilation to occur. Experimental evidence demonstrating how this is accomplished in the plant cell is lacking. In the experiments reported here, we studied H+ and K+ flux across membranes of purified chloroplast inner-envelope vesicles. We were able to demonstrate ATP-de...
متن کاملEditorial: Ion Transport in Chloroplast and Mitochondria Physiology in Green Organisms
This Research Topic represents a collection of articles either focusing on specific ion transport mechanisms or providing updated overviews of the research and transport mechanisms awaiting identification in chloroplasts and mitochondria. Some articles also cover detailed mechanisms of action and regulatory processes for already identified ion transport components. Other contributions unravel n...
متن کاملBiogenic membranes of the chloroplast in Chlamydomonas reinhardtii.
The polypeptide subunits of the photosynthetic electron transport complexes in plants and algae are encoded by two genomes. Nuclear genome-encoded subunits are synthesized in the cytoplasm by 80S ribosomes, imported across the chloroplast envelope, and assembled with the subunits that are encoded by the plastid genome. Plastid genome-encoded subunits are synthesized by 70S chloroplast ribosomes...
متن کاملA new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications
Chloroplast protein import presents a complex membrane traversal problem: precursor proteins must cross two envelope membranes to reach the stromal compartment. This work characterizes a new chloroplast protein import intermediate which has completely traversed the outer envelope membrane but has not yet reached the stroma. The existence of this intermediate demonstrates that distinct protein t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 128 3 شماره
صفحات -
تاریخ انتشار 2002